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Abstract 

Forest aboveground biomass (AGB) serves as a vital ingredient 
for global climate change policy making. It serves as an 
indicator of climate change in term of carbon sequestered in 
forests and act as a key constituent in the carbon cycle that 
moderates the global climate. Hence, monitoring the carbon 
dynamics becomes extremely important in terms of ecological 
services. Remote Sensing is an advanced tool for suitable and 
accurate measurements of forest AGB on a regional scale. The 
study targets in the assessment of forest AGB over the mixed 
deciduous tropical forests of Bhimbandh Wildlife Sanctuary in 
Bihar (India) using forest-based inventory and integrated 
geospatial approaches to develop a regression model based on 
the statistical correlation between AGB measured at plot level 
and the associated spectral parameters derived from IRS P-6 
LISS III sensor. AGB map is generated from the best-fit model 
in GIS platform following the top-down and bottom-up 
inventory approach, which is further converted to carbon map 
using standard carbon conversion factor. The methodology 
adopted helped in developing a robust yet simple approach in 
proper accounting of forest sequestered carbon in terms of AGB 
using integrated geospatial techniques. Hence, the study 
recommends the combined use of information generated from 
both the field-based forest inventory and geospatial approaches 
for better assessment of stand biomass with significant 
contribution towards operational forestry and climate change 
studies, in context to REDD (Reduced Emissions from 
Deforestation and forest Degradation)/REDD+ regimes for 
measuring and monitoring the current state and dynamics of 
forest carbon stocks. 
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Introduction  

The burning issue of Climate Change and the related concept of REDD (Reducing 
Emissions from Deforestation and forest Degradation) is gaining momentum in climate 
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change policy negotiations at global and national levels. The United Nations Framework 
Convention on Climate Change (UNFCCC) adopted this concept of REDD in order to 
provide fiscal incentives for reductions in emissions from deforestation below a critical 
level in the developing countries. Development of this concept is briefed out by Sharma 
et al. 2013). The basic steps involved in the methodology for proper execution of a 
functional REDD system includes proper evaluation of forest carbon stock dynamics, 
accounting CO2 emissions from anthropogenic activities, determining a reference for 
forest carbon stock dynamics and mobilizing benefits to the local contributors (Sharma et 
al., 2013).  

Measurement of biophysical indicators of forest carbon storage, e.g. tree canopy 
height or above ground biomass (AGB) is a key parameter to understand the terrestrial 
carbon balance (Santoro and Kellndorfer, 2012). Also, accurate estimate of biomass, viz. 
the carbon content of forests is a critical information for REDD. Forest biomass can be 
assessed either through field-based measurements or by remotely sensed methods (Sinha 
et al., 2015a). Forest biomass is an important component for studying the carbon cycle 
dynamics and is one of key indicators of climate change and forest health (Sinha et al., 
2014; 2018). Biomass varies with land cover types and an improved classification is 
important in this case (Sinha et al., 2015c). Some recent studies using vegetation indices 
generated from optical satellite data have shown good results for assessing biomass 
(Kumar et al., 2013). However, several studies using optical remote sensing data showed 
poor or moderately low correlation values for biomass estimation, which is observed 
mostly ≤0.3  (Hyyppa et al., 2000; Foody et al., 2003; Thenkabail et al., 2004; Sinha et 
al., 2016). Some studies, however, documented an increase in the correlation using 
exponential transformation of the variables in regression. Regression analysis is not 
considered an effective technique for estimating forest parameters from digital satellite 
imagery data by several, since correlation of determination, a measure of precision used 
in regression modeling, is hardly capable of explaining more than even 50 % variation by 
the methods (Rahman et al., 2008). However, regression analysis has been observed a 
good option for biomass estimation using Landsat generated vegetation indices (Zheng et 
al., 2017). 

Microwave SAR data has the potential to give better predictions for biomass 
estimation, mainly for low biomass than high biomass and retrieval of other forest 
parameters than the optical remote sensing data, even during adverse climatic conditions 
and diurnal variations (Sinha, 2015a). Simultaneous use of optical and SAR can enhance 
this limit and improve the biomass assessment (Sinha et al., 2016). The use of integrated 
multi-frequency SAR provides even better alternative for biomass estimation (Sinha et 
al., 2017). The synergic use of optical and multi-frequency SAR can enhance the 
accuracy of the estimation even further (Sinha, 2017). Studies shows the development of 
qualitative evaluation of vegetation parameters work better with polarimetric complex 
SAR data (Maity et al., 2011), however, Sinha (2016) showed poor relationship between 
biomass and Polarimetric Scattering Parameter products. SAR interferometry also adds 
valuable information regarding forest biomass ((Sinha et al., 2015b; Kumar, 2009). 
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Materials and Methods 

Study area and datasets: A case study of mixed deciduous tropical forest of Bhimbandh 
Wildlife Sanctuary, Bihar in India with geographic extent of 25º19'30''N - 24º56'50''N 
latitudes and 86º33'33''E - 86º11'51''E is considered for the study and represented in 
Figure 1.  Details of the study area are mentioned in literatures (Sinha et al., 2013; Sinha 
and Sharma, 2013). Data from optical satellite sensor of IRS P-6 LISS III of 2012 with a 
spatial resolution of 23.5 m is used in this study. 

Field inventory: It is generated from in-situ field data collection of certain dendrometric 
parameters like stand height and girth at breast height (GBH), along with the species 
type, density and composition through random sampling approach during 2012. 34 square 
sample plots of 0.1 hectare area are selected over the entire area that represents the 
variability and homogeneous vegetation units of the forest area. GBH was converted to 
DBH (Diameter at Breast Height) and using this information along with tree height 
information, the tree volumes were estimated via volumetric equations and biomass were 
calculated after multiplying each tree volume with the respective specific gravity (Sinha 
et al., 2016, 2018). 

IRS P-6 LISS III image transformation 

The LISS-III imagery is geometrically rectified and co-registered to the Survey of India 
(SOI) toposheet considering analogous distinct identifiable objects on the toposheets, 
ground and image (Sinha et al., 2013). Principal components, texture measures and NDVI 
were calculated from the image. NDVI showed the strongest relationship with the 
biomass among all the vegetation indices (Kumar et al., 2013). Sarker (2010) highlighted 
the importance of texture measures in biomass assessment. Texture analysis with 3×3 
floating window size for individual LISS-III bands were performed using occurrence 
matrices. Concurrently, texture measures of the principal components were also analyzed 
using the same window size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Location map of the study area. 
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Biomass/carbon MLR modelling 
 
Metrices derived from LISS-III image were equated to the field-based plot biomass. 
Multiple Linear Regression (MLR) analysis was used to integrate the metrices 
statistically to obtain the best fit model that enhanced the model estimate accuracy. The 
performance of the model was judged on the basis of coefficient of determination (R2) 
values between estimated and predicted biomass and the RMSE (root mean square error) 
of the estimates. The model was then validated with nine additional field biomass data of 
year 2015 and the validation was accounted based on the aforesaid statistical measures, 
along with a non-dimensional statistical measure, namely Willmott’s index of agreement 
(d).  
 

 
 

Figure 2. Approach of the study. 
 
After validating, the biomass model was transformed to derive carbon stock values using 
conversion factors of 0.5 and then to carbon dioxide by multiplying with 3.67 (Mushtaq 
and Malik, 2014; Rashid et al., 2017; Waikhom et al., 2017). The resultant model was 
finally represented spatially in the form of forest carbon sequestration map in GIS 
framework. The entire flow-diagram of the methodology adopted in the study is 
represented in Figure 2. 
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Results and Discussion 

The biomass model: On regressing, the NDVI values to the plot AGB, a maximum R2 
value of 0.26 was obtained following linear model as the best fit. Equation 1describes the 
relation between NDVI and field-based biomass which is further used as an ingredient in 
the final synergic model for biomass prediction. 

 
1.143*1.340 −= NDVIBiomass      (Eq. 1) 

 
Among the texture metrices, the highest R2 value was obtained for the variance of 

Near Infra-red (NIR) band of LISS-III imagery in a logarithmic model. Equation 2 
defines the relation between NIR band variance and field-based biomass which again is 
further used as an input for the final synergic model for biomass prediction. 
 

( )ianceNIReBiomass var*0562.0*8.81 −=     (Eq. 2) 
 

PCA and texture measures of PCA components were simultaneously analyzed. 
The greatest correlation of plot biomass was observed with the first principal component 
(PCA1) variance in logarithmic model. Equation 3 shows the relation between PCA1 
variance and field-based biomass which again is further used as an input for the final 
synergic model for biomass prediction. 
 

( )iancePCAeBiomass var1*003.0*8.76 −=     (Eq. 3) 
 

Multiple Linear Regression (MLR) analysis was performed and the Equations 1, 2 
and 3 were statistically combined to design the best fit integrated model and represented 
as Equation 4. The same equation represents the biomass prediction model generated 
from optical satellite data. 
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(Eq. 4)

 
 

Model performance and validation statistics 

Performance of the best-fit model (A) as described in Equation 4 is signified by 
the following statistics mentioned in Table 1, in terms of R2, RMSE and average absolute 
accuracy. A correlation of 0.3 is observed between the observed and estimated biomass, 
with RMSE of 35 Mg/ha and a model accuracy of 47.5%. On validation of the model (B), 
a moderately high correlation value of 0.6 is obtained between the observed and 
estimated biomass, and the Willmott's Index of agreement of 0.72 between the modelled 
and the actual field data. 
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Table 1: Model evaluation (A) and validation (B) parameters for biomass prediction. 
 

 R2 RMSE (Mg/ha) Average Absolute 
Accuracy Willmott's Index (d) 

A 0.3 35 47.5% - 
B 0.6 26.7 - 0.72 

 

Biomass/carbon maps: Spatial information 

Figure three illustrates the forest above-ground biomass map of the study site 
using Equation 4 and is categorized  into ten classes based on biomass levels from very 
low (<25 Mg/ha and 25-50 Mg/ha), low (50-75 Mg/ha and 75-100 Mg/ha), moderate 
(100-125 Mg/ha and 125-150 Mg/ha), high (150-175 Mg/ha and 175-200 Mg/ha) to very 
high (>250 Mg/ha). Maximum proportion of the biomass lies with 125 Mg/ha and 
average biomass of the area is calculated to 41.33 Mg/ha. The forest carbon stock and 
carbon dioxide map is portrayed in Figure 4 that demonstrates the spatial information of 
carbon over the entire area. The map is simultaneously reclassified into five classes 
according to the concentration levels as depicted in the Figure 4. Most of the forested 
area lies within the carbon stock concentration of 25-75 CMg/ha. The total biomass and 
carbon stock over the entire study area is calculated to 2779442.5 and 1389721.25 Mg 
respectively. 

 

 
  

Figure 3. Spatial forest above-ground 
biomass map.   

Figure 4. Spatial forest carbon stock 
and carbon dioxide concentration map. 
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Conclusion 

The approach in the study exposes the prospects of LISS-III data for modelling 
and mapping above ground forest biomass and carbon over mixed deciduous tropical 
forests. Results indicate that the NIR band in the visible spectrum of LISS-III delivers the 
utmost information on forest biomass. Results also signify the contribution of textural 
measures and principal components along with NDVI in the estimation of biomass with 
optical sensor. The accuracy in the estimation shall vary with the number and mode of 
sampling, climatic parameters, sensors used, models and algorithms adopted in the study, 
etc. Limitations of the study were the biasness in selecting the sample plots, although the 
plots were selected in such a way so that they represent all the vegetation strata found in 
the area. The other constraints being the complexity of forest stand structure, and non-
transferable of the model to different areas; however, the approach can be universally 
adopted. The application of LiDAR, hyperspectral and microwave remote sensing can 
enhance the accuracy of the estimates; however, the ease in accessibility of the optical 
data provides an upper hand. What-so-ever, irrespective of the sensor, remote sensing 
technology provides a faster, cost effective, easier and timely measurement with 
moderate to high accuracy. 
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